Was macht eine Arbeitsgesellschaft, der die Arbeit ausgeht?

Der Titel meines Beitrags bezieht sich auf die Philosophin Hannah Arendt, die vor Jahren die Frage stellte, was eine Arbeitsgesellschaft anstelle, der die Arbeit ausgehe (Arendt, H. (1981): Vita activa. Vom tätigen Leben, München),

Dabei ist zunächst einmal zu klären, was unter Arbeit zu verstehen ist, denn auch hier hat sich über die Zeit einiges verändert, was die Abkürzungen Arbeit 1.0, Arbeit 2.0, Arbeit 3.0 und Arbeit 4.0 beschreiben.

Ein wesentlicher Teil des heutigen Arbeitsverständnisses bezieht sich immer noch auf die Sicherung und Erweiterung des Lebensunterhaltes.

„Unter Arbeit verstehen wir die Vielfalt menschlicher Handlungen, deren Zweck die Sicherung und Erweiterung des Lebensunterhaltes der arbeitenden Individuen und ihrer Angehöriger ebenso beinhaltet wie die Reproduktion des gesellschaftlichen Zusammenhanges der Arbeitsteilung und hierüber der Gesellschaft selbst, Arbeit ist vergesellschaftetes Alltagsleben (von Ferber 1991)“ (Peter, G. (1992): Situation-Institution-System als Grundkategorien einer Arbeitsanalyse. In: ARBEIT 1/1992, Auszug aus S. 64-79. In: Meyn, C.; Peter, G. (Hrsg.) (2010)).

Dieses Verständnis von Arbeit kann dem Denken in einer Industriegesellschaft zugeordnet werden. Dazu gehören auch Entlohnungs-Systeme, Sozial-Systeme, Rechts-Systeme, Gesundheits-Systeme, Bildungs-Systeme usw.

Wenn sich also am Verständnis von Arbeit etwas ändert, hat das erhebliche Auswirkungen auf all die genannten, und nicht-genannten, gesellschaftlichen Systeme. Am Beispiel der Landwirtschaft kann das gut nachvollzogen werden: Nachdem hier automatisiert/industrialisiert wurde, gab es zwar weniger Arbeit in dem Bereich, doch mehr Arbeit in einem neuen Bereich, eben der Industrie.

Genau hier setzt ein neueres Verständnis Von Arbeit an, das sich aus dem Strukturbruch zwischen einfacher und reflexiver Modernisierung ableitet, und Arbeit ganzheitlicher betrachtet:

Arbeit, und zwar das „Ganze der Arbeit“ (Biesecker 2000), sollte deshalb neu bestimmt werden, zunächst verstanden als „gesamtgesellschaftlicher Leistungszusammenhang“ (Kambartel 1993) der Reproduktion, woraus sich spezifische Rechte und Pflichten, Einkommen sowie Entwicklungschancen für die Mitglieder einer Gesellschaft ergeben. Von einem Ende der Arbeitsgesellschaft ist nämlich keine Rede mehr, wohl aber von einem Epochenbruch und der Notwendigkeit einer umfassenden Neugestaltung der gesellschaftlichen Arbeit“ (Peter/Meyn 2010).

Wenn Arbeit nun eher als „gesamtgesellschaftlicher Leistungszusammenhang“ gesehen werden sollte, bedeutet das natürlich, dass die auf dem früheren Begriff der Arbeit basierenden gesellschaftlichen Systeme (Gesundheits-System, Sozial-System Wirtschafts-System usw.) angepasst werden sollten.

Hinzu kommt, dass schon die nächste, von den Möglichkeiten der Künstlicher Intelligenz getriebene, Entwicklung ansteht. Dabei wird KI viele bisher bekannte Tätigkeitsportfolios verändern, und auch neue Tätigkeitsportfolios schaffen – und das relativ schnell. Siehe dazu KI und Arbeitsmarkt: Interessante Erkenntnisse aus einer aktuellen, belastbaren wissenschaftlichen Studie.

Aktuell hat man den Eindruck, dass alle gesellschaftlichen Systeme von den technologischen Entwicklungen getrieben werden, ganz im Sinne von Technology first. Es ist an der Zeit, Prioritäten zu verschieben – und zwar in Richtung Human first. Das ist möglich. Wie? Ein Beispiel:

„By comparison, Society 5.0 is “A human-centred society that balances economic advancement with the resolution of social problems by a system that highly integrates cyberspace and physical space” (Japan Cabinet Office, 2016, zitiert in Nielsen & Brix 2023).

Auch hier geht es um einen menschenzentrierten Ansatz, der allerdings nicht auf den Industriearbeiter begrenzt ist, sondern alle Bürger generell mitnehmen will. Dabei sollen die konkreten Probleme der Menschen (endlich) gelöst werden.

Da gibt es noch viel zu tun. So verstandene Arbeit geht nicht aus, und sollte in allen gesellschaftlichen Bereichen angemessen entlohnt werden.

Es ist ein Irrtum anzunehmen, Intelligenz sei zwangsläufig bewusst und hänge nur mit Überlegung zusammen

Image by StockSnap from Pixabay

In verschiedenen Beiträgen hatte ich schon ausgeführt, dass es am Konstrukt der Messbarkeit der Intelligenz in Form eines Intelligenz-Quotienten (IQ) schon lange Kritik gibt.

In Zeiten von Künstlicher Intelligenz führt der Ansatz eines IQ in der Zwischenzeit zu verschiedenen „Stilblüten“: Beispielsweise hat das OpenAI Model „o1“ einen IQ von 120 – ein Kategorienfehler?

Das Intelligenz-Konstrukt sollte sich in einer immer komplexeren Umwelt weiterentwickeln, um wieder eine bessere Passung zur gesellschaftlichen Entwicklung zu haben. Siehe dazu Intelligenz-Quotient (IQ) aus Sicht der Komplexitätsforschung. Gigerenzer (2007) hat in seinem Buch Bauchentscheidung noch folgenden Aspekt in die Diskussion um die Messbarkeit von Intelligenz eingebracht:

Es ist ein Irrtum anzunehmen, Intelligenz sei zwangsläufig bewusst und hänge nur mit Überlegung zusammen. (…) Doch diese Auffassung ist nicht totzukriegen. Sogar wenn es um emotionale Intelligenz geht, herrscht noch die Ansicht vor, man könne sie messen, indem man Fragen stellt, die das deklarative Wissen betreffen. Beispielsweise forderte man die Befragten auf, sich in Bezug auf die Aussage »Ich weiß, warum meine Gefühle sich verändern« selbst einzustufen (siehe Matthews et al. 2004). Dem liegt die Überzeugung zugrunde, dass Menschen in der Lage und bereit sind mitzuteilen, wie ihre Intelligenz funktioniert. Im Gegensatz dazu zeigten die einflussreichen Untersuchungen von Nisbett und Wilson (1977), dass wir häufig keinen introspektiven Zugriff auf die Gründe unserer Urteile und Gefühle haben. Die Forschung zum impliziten Lernen beschäftigt sich mit Lernvorgängen, die unabsichtlich und unbewusst stattfinden (Lieberman 2000; Shanks 2005)“ (Gigerenzer 2007).

Wenn etwas nicht messbar ist, wird es eben messbar gemacht. Getreu dem bekannten Management-Spruch: „If you can not measure it, you can not manage it“. Die Frage stellt sich heute natürlich: Stimmt das Mantra denn noch ? Denn es wird in vielen Bereichen immer deutlicher, dass Kennzahlen eine risikoreiche Reduzierung der Komplexität darstellen können. Siehe dazu auch

Die Messbarmachung der Intelligenz: Ein Phänomen der Industrialisierung?

Künstliche Intelligenz und Menschliche Intelligenz

Künstliche Intelligenz – ein Kategorienfehler?

Personas sind für Personalization ungeeignet

Personas sind (nach IREB-Glossar) „fictional characters created to represent the different user types that might use a site, brand, or product in a similar way.“ Die Verwendung von Personas gerade im Agilen Projektmanagement zur Ableitung der Anforderungen und zur Formulierung und Bewertung von User Stories ist populär. Dabei hatte ich allerdings auch schon in einem früheren Blogbeitrag auf auf Tücken dieser Vorgehenseise hingewiesen: Die Falle bei den Anforderungen.

Darüber hinaus hatte auch Frank Piller die Verwendung von Personas für die Hybride Wettbewerbsstrategie Mass Customization als nicht geeignet angesehen, da „A “persona of one” is turning the persona idea to its opposite“. Siehe dazu ausführlicher: Ist die Verwendung von Persona das Gegenteil von Mass Customization?

Neben dem Agilen Projektmanagement und Mass Customization haben sich auch Autoren mit Personas in Bezug zum Megatrend Mass Personalization befasst. Auch hier sieht man die Verwendung von Personas kritisch:

„Seit einiger Zeit „menschelt“ es in den Marketingabteilungen verstärkt. Anstelle von unanschaulichen Excel-Files mit ihren Tabellen und Diagrammen werden bei Präsentationen so genannte Personas zum Leben erweckt. Auch User Personas genannt. Einfach ausgedrückt dienen sie dazu, einen Zielkunden darzustellen.

Was Personas sind, darüber gehen die Meinungen in der Fachwelt auseinander. Die einen sprechen von fiktiven, aber realitätsnahen Nutzern, die anderen von prototypischen Kunden ihres Angebots – oder von archetypischen Nutzern. Zwar unterschiedlich bezeichnet, dienen sie einem einheitlichen Zweck: Sie repräsentieren Bedürfnisse einer Zielgruppe und machen es möglich, (mehr oder weniger) fundierte Entscheidungen bei der Entwicklung nutzerfreundlicher Produkte zu treffen. Von Beginn an.

Mass Personalization kann nicht realisiert werden, ohne die individuellen Nutzerbedürfnisse zu berücksichtigen. Die schlechte Nachricht: Personas sind nicht zu 100 Prozent zielführend und helfen bei personalisierten Produkten nicht weiter. Sie bieten nur eine Typisierung der Nutzer für Entwicklungszwecke und keine Personalisierung für die Produktion. Stattdessen wird ein parametrisiertes Profil benötigt, das mit dem individualisierten Fertigungsplan gematcht werden kann“ (Briehm/Dangelmeyer, in Krieg/Groß/Bauernhansl (2024) (Hrsg.)).

Es ist nicht ganz leicht, die feinen Unterschiede zu erkennen und daraus die richtigen Schlussfolgerungen zu ziehen. Daher ist es wichtig, sich zu informieren, und das aus erster Hand.

Im September 2026 haben Sie dazu auf der 12. MCP 2026 zu Mass Customization und Personalization die Möglichkeit. Die internationale Konferenz findet diesmal in Balatonfüred, Ungarn statt. Sprechen Sie mich bei Fragen bitte direkt an. Als Initiator der Konferenzreihe kann ich Ihnen gerne weitere Informationen geben.

Innovationen machen sich Veränderungen zunutze, die schon stattgefunden haben. Was haben Konferenzen damit zu tun?

In den letzten Jahrzehnten habe ich weltweit an vielen Konferenzen teilgenommen. Beispielhaft möchte ich hier nur die erste Weltkonferenz zu Mass Customization and Personalization MCPC 2001 an der Hong Kong University of Science and Technology (HKUST), die MCPC 2003 in München, die MCPC 2007 am MIT in Boston, die MCPC 2015 in Montreal usw. nennen..

Überall konnte ich sehen, welche Themen die Forscher in ihren Veröffentlichungen vorstellten. Konferenzen sind daher ein vorlaufender Indikator für aktuelle und zukünftige Entwicklungen, auch für Innovationen. Solche Zusammenhänge hat Peter Drucker schon vor vielen Jahren aufgezeigt:

„Es wird allgemein angenommen, dass Innovationen grundsätzlich Veränderungen herbeiführen – doch nur die wenigsten leisten das. Erfolgreiche Innovationen machen sich Veränderungen zunutze, die schon stattgefunden haben. Sie nutzen beispielsweise den Time-lag – in der Wissenschaft macht dieser oft zwanzig bis dreißig Jahre aus – zwischen der Veränderung an sich und deren Auf- und Annahme. Während dieses Zeitraums muss der Nutznießer dieses Wandels kaum, wenn überhaupt, Konkurrenz befürchten“ (Drucker 1996).

Manche Themen wie die Entwicklung und Nutzung von Konfiguratoren im Rahmen der Hybriden Wettbewerbsstrategie Mass Customization, Problemlösungen zur Verschwendung in der Massenproduktion durch Personalisierung, oder die Nutzung von Additive Manufacturing (3D-Druck), usw. wurden in den letzten Jahrzehnten schon auf Konferenzen vorgestellt. Es dauerte dann doch noch viele Jahre, bis die Entwicklungen im Mainstream der Unternehmen ankamen.

Es ist eine Kunst, die auf Konferenzen aufgezeigten Themen und Problemlösungen für die eigene Organisation zum richtigen Zeitpunkt nutzbar zu machen, also als Innovationen anzubieten. Die von Drucker angesprochene Zeitspanne von 20-30 Jahren bietet hier die Möglichkeit, das richtige Timing zu finden. Zu früh mit Innovationen auf den Markt zu gehen, kann genau so negativ sein, wie Innovationen zu spät anzubieten.

Auf der Konferenz MCP 2026 haben Sie im September wieder die Möglichkeit, sich über die Themen (Mass) Customization und Personalization, sowie Open Innovation aus erster Hand zu informieren. Die von mir initiierte Konferenzreihe findet in diesem Jahr das 12. Mal statt, und zwar in Balatonfüred (Ungarn). Wir werden auch dabei sein.

Künstliche Intelligenz – It All Starts with Trust

In einem eher unsicheren und turbulenten Umfeld kann es dazu kommen, dass man als Einzelner, oder als Organisation anderen Menschen, oder anderen Organisationen, misstraut. Das wiederum führt dazu, dass alle Abläufe bis ins Detail geregelt und kontrolliert werden – getreu dem Spruch „Vertrauen ist gut, Kontrolle ist besser“. Das funktionierte auch in einer eher sich langsam verändernden Welt ganz gut.

Um in einem heute eher vorliegenden dynamischen Umfeld schnell und flexibel voran zu kommen, ist ein Arbeiten auch in komplexen Netzwerken gefordert. Dabei kann nicht alles bis ins kleinste Detail geregelt sein, sodass es auf ein gewisses Maß an Vertrauen in der Zusammenarbeit ankommt, wodurch wiederum auf einen Teil der Kontrolle verzichtet werden kann.

„Menschliches Handeln in modernen Gesellschaften allgemein und in modernen Organisationsformen, wie Netzwerke insbesondere, erfordern Vertrauen darauf, dass sich andere Menschen gemäß dem mit dem eigenen Handeln verbundenen Erwartungen verhalten. Vertrauen ist dabei ein Mechanismus, der es ermöglicht, auf einen Teil der Kontrolle zu verzichten, und der die Bereitschaft erhöht, ein Risiko einzugehen (Giddens 1995, 1997, Luhmann 2000). Gerade in Netzwerken ist dies besonders relevant, weil Zusammenarbeit unter höherer Unsicherheit stattfindet als in traditionellen Organisationen (…)“ (Vollmert, A.; Wehner, T., in Huber et al. 2005).

Kommt es also in einem Netzwerk zu einer wechselseitigen Vereinbarung von Regeln, so kann Systemvertrauen entstehen.

Betrachten wir die bekannten KI-Modelle (KI-Systeme, Netzwerke) wie ChatGPT, Gemini etc., so können diese KI-Systeme als Closed Models bezeichnet werden, da sie wenig oder kaum Transparenz bieten – also wie eine Art Black Box agieren. Diese In-Transparenz widerspricht den oben genannten Voraussetzungen für eine vertrauensvolle Zusammenarbeit.

Ganz anders sieht es bei Open Source AI Modellen (Systemen, Netzwerken) aus, die transparent sind, und sich an die Open Source Ai – Definition halten. Das alles stellt eine gute Basis für eine vertrauensvolle Zusammenarbeit im Netzwerk dar. Siehe dazu auch

Bris, A. (2025): SuperEurope: The Unexpected Hero of the 21st Century

Das Kontinuum zwischen Closed Source AI und Open Source AI

Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Gedanken zu Vertrauen und Misstrauen

Neue Arbeitswelt: Vertrauen als Ersatz für Kontrolle?

Behandelt die Wissensgesellschaft ihr vermeintlich höchstes Gut „Wissen“ angemessen?

Image by Bruno from Pixabay

Die heute propagierte Wissensgesellschaft wird oft kritisiert. Beispielsweise findet man in Liessmann (2008): Theorie der Unbildung den Hinweis, dass Wissen im Gegensatz zu Information nicht unbedingt zweckorientiert ist:

„Wissen lässt sich viel, und ob dieses Wissen unnütz ist, entscheidet sich nie im Moment der Herstellung oder Aufnahme des Wissens“ (ebd.).

Der Autor treibt seine Kritik an der Entwicklung bei den Themen, Wissen, Wissen als Ressource und Wissensmanagement mit einer These auf die Spitze, indem er formuliert:

„Man könnte die These riskieren, dass in der Wissensgesellschaft das Wissen gerade keinen Wert an sich darstellt. Indem das Wissen als ein nach externen Kriterien wie Erwartungen, Anwendungen und Verwertungsmöglichkeiten hergestelltes Produkt definiert wird, ist es naheliegend, dass es dort, wo es diese Kriterien nicht entspricht, auch rasch wieder entsorgt werden muss. Gerne spricht man von der Beseitigung des veralteten Wissens, vom Löschen der Datenspeicher und vom Abwerfen unnötigen Wissensballasts. Mit anderen Worten: Die Wissensgesellschaft behandelt ihr vermeintlich höchstes Gut mitunter so, als wäre es der letzte Dreck“ (Liessmann 2008).

Wissen, immer und überall unter Nutzengesichtspunkten zu sehen, ist fatal. Wissen um seiner selbst willen kann durch überraschende Neukombinationen zu kreativen Gedanken und Problemlösungen führen. Grenzen wir dieses Wissen aus, wird alles Wissen beliebig, und damit auch weniger kreativ, bzw. innovativ, was uns wieder zu den kritisierten Nutzengesichtspunkten führt.

Es scheint paradox zu sein: Wissen ohne Nutzengesichtspunkte zuzulassen, führt zu einer besseren Nutzung von Wissen.

Gerade in Zeiten von Künstlicher Intelligenz ist es wichtig, Wissen gut zu verstehen, um den Umgang damit angemessen zu ermöglichen. Bei einer einseitig nutzenorientierten Betrachtung von Wissen, kann es gesellschaftlich zu Verwerfungen kommen – gerade so, als ob ein Sportler nur den rechten Arm trainieren würde.

Warum ist es so schwierig, Experten-Wissen zu teilen?

In dem Beitrag If HP knew what HP knows, we would be three times as profitable hatte ich schon einmal darauf hingewiesen, dass der Umgang mit Wissen im Allgemeinen in Unternehmen nicht so einfach ist. Betrachten wir speziell noch das Wissen von Experten, also deren Expertise, so wird deutlich, dass es sehr schwierig ist, dieses Experten-Wissen zu teilen, oder sogar zu übertragen. Dazu habe ich folgende Begründung gefunden:

„One set of limitations on sharing expertise is cognitive, that is, the way experts store and process information may make it difficult for them to share that expertise with others regardless of whether or not they are motivated to do so.

Another cognitive problem in transferring knowledge is the challenge of articulating knowledge that is tacit rather than explicit.

Another problem in asking experts to articulate knowledge is that knowledge is embedded and difficult to extract from the particular situation or environment (Brown and Dunguid 1998; Hansen 1999; Lave and Wenger 1991.“

Quelle: Hinds, P. J.; Pfeffer, J. (2003), in: Ackerman, M. S.; Pipek, V.; Wulf, V. (2003) (Eds.).

Auch in Zeiten von Künstlicher Intelligenz sollten wir uns die Frage stellen, welches Experten-Niveau hier erreicht werden kann. Siehe dazu auch

KI und Arbeitsmarkt: Interessante Erkenntnisse aus einer aktuellen, belastbaren wissenschaftlichen Studie

Wissensmanagement und Expertise (Expertenwissen teilen)

Das Organisationsprinzip hinter der Interaktiven Wertschöpfung

Image by Gerd Altmann from Pixabay

In ihrer Veröffentlichung Reichwald/Piller (2009): Interaktive Wertschöpfung. Open Innovation, Individualisierung und neue Formen der Arbeitsteilung haben die Autoren das Konzept einer Interaktiven Wertschöpfung ausführlich dargestellt. Interessant dabei ist, welches Organisationsprinzip dahinter steckt. Dazu habe ich folgendes gefunden:

„Das hinter der interaktiven Wertschöpfung stehende Organisationsprinzip wurde vom Yale-Wissenschaftler Yochai Benkler (2002, 2006) als „Commons-based Peer-Production“ bezeichnet: „Peer-Production“, das eine Gruppe Gleichgesinnter („Peers“) gemeinschaftlich ein Gute produziert, „Commons-based“, da das Ergebnis der Allgemeinheit zur Verfügung steht und auf offenem Wissen („Commons“) basiert. Die Idee der interaktiven Wertschöpfung baut auf der Commons-based Peer-Production auf, erweitert diese aber um einen Rahmen, in dem ein fokales Unternehmen diesen Prozess anstößt, moderiert oder unterstützt – genau wie wir es bei Threadless oder Innocentive gesehen haben“ (Reichwald, R.; Möslein, K. M.; Piller, F. T. (2008): Interaktive Wertschöpfung – Herausforderungen für die Führung. In: Buhse, W.; Stamer, S. (Hrsg.) (2008): Die Kunst, Loszulassen Enterprise 2.0. S. 99-122).

Basis ist also eine (Interaktive) Wertschöpfung, die darauf ausgerichtet ist, gemeinschaftlich Produkte zu erschaffen, die dann der Allgemeinheit zur Verfügung steht (nach Benkler).

Die von den Autoren propagierte „Interaktive Wertschöpfung“ soll darauf aufbauen, doch schränkt sie durch den Fokus auf Unternehmen das zugrunde liegende Organisationsprinzip einer Commons-based-Peer-Produktion eher ein.

Mit den heutigen technologischen Möglichkeiten ist es einzelnen Usern, und deren vernetzten Peers möglich, Produkte und Dienstleistungen für die Allgemeinheit zu entwickeln und selbst anzubieten. Dabei müssen diese User nicht zwangsläufig mit Unternehmen kooperieren, da die Transaktionskosten im gesamten Prozess in den letzten Jahrzehnten drastisch gesunken sind. Siehe dazu auch

Eric von Hippel (2017): Free Innovation

Eric von Hippel (2005): Democratizing Innovation 

MCP-Konferenz im September 2026 in Balatonfüred, Ungarn

Das Netzwerk vom Lernen

Eigene Darstellung nach Vester, F. (2001)

Wenn wir von Lernen sprechen, weiß scheinbar jeder, was gemeint ist. Alle reden mit, wenn es ums Lernen geht, doch kaum jemand weiß, was man unter Lernen versteht und was Lernen ausmacht. Lernen wird in der Schule, an Universität oder möglicherweise noch ein wenig im Beruf verortet.

Dass Lernen aufgrund der Informationen aus der Umwelt permanent stattfindet, und dass Lernen ein sehr komplexes Netzwerk darstellt, ist für viele möglicherweise eine kleine Überraschung.

Frederic Vester, der das vernetzte Denken in komplexen Systemen immer wieder propagiert hat, hat versucht, Lernen in seinen Grundzügen zu visualisieren. In der Abbildung wird deutlich, dass es sich hier um eine grobe und vereinfachende Darstellung des sehr vielfältigen und vernetzten Prozess des Lernens handelt.

Dennoch wird deutlich, dass Lernen nicht so einfach gesteuert werden kann, wie eine triviale Maschine, denn der Mensch ist eher ein nicht-triviales System. Die Erwachsenenbildung hat – Dank Arnold, R. – schon früh erkannt, dass man den Lernprozess nur ermöglichen kann, und schlägt folgerichtig dazu eine Ermöglichungsdidaktik vor.

Diese Erkenntnis sollten sich auch Unternehmen zu Nutze machen, die sich als Lernende Organisation verstehen und Lernen auf der individuellen Ebene, der Teamebene, der Organisationalen Ebene und der Netzwerkebene betrachten müssen. Doch: Welche Führungskraft versteht schon etwas von Lernprozessen? Siehe dazu auch

Agiles Lernen und selbstorganisierte Kompetenzentwicklung.

Künstliche Intelligenz macht Lebenslanges Lernen zur Pflicht.

Organisation und Lernen – ein immer noch schwieriges Thema. Warum eigentlich?

Lernende Organisation oder Organisationales Lernen?

Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Sind wir nicht intelligent genug, um zu wissen, was Intelligenz ist?

Image by Gerd Altmann from Pixabay

Der Intelligenz-Begriff wird schon fast inflationär verwendet. Es geht um „intelligente Produkte“, „Künstliche Intelligenz“, und im Zusammenhang mit Menschen um einen scheinbar messbaren Intelligenz-Quotienten (IQ).

Dass die Messbarmachung der Intelligenz in Zeiten von Künstlicher Intelligenz tückisch sein kann, habe ich in dem Beitrag OpenAI Model „o1“ hat einen IQ von 120 – ein Kategorienfehler? erläutert. Hans Markus Enzensberger hat sich auch mit der IQ-Messung intensiv befasst, und ist zu folgendem Schluss gekommen:

Enzensberger: (…) Das ist genauso ein heikles Wort, kernprägnant und randunscharf, wie „Intelligenz“. Ich habe mich mit Fragen der IQ-Messung beschäftigt. Die Quantifizierung des IQ ist schwierig. Wir sind einfach nicht intelligent genug, um zu wissen, was Intelligenz ist. Als weitere Falle kommt die Subjektivität hinzu. Intelligenztests messen das, was der Tester darunter versteht. Ein Indio aus dem Amazonas wird dabei ebenso schlecht abschneiden wie umgekehrt ein Psychologe, wenn er sich im Regenwald einer Prüfung seiner Fähigkeiten unterzieht“ (Pöppel/Wagner 2012:91).

Es kommt somit darauf an, was wir unter „Intelligenz“ verstehen (wollen). Es ist eine Annahme, ein Konstrukt, das zu der Lebenswirklichkeit dann eine Passung hat – oder eben nicht.

Es scheint so, dass die Bestimmung (Messung) eines Intelligenz-Quotienten in dem Umfeld einer Industriegesellschaft geeignet war. In den letzten Jahrzehnten hat sich das Umfeld allerdings sehr dynamisch verändert, sodass sich möglicherweise auch das Intelligenz-Verständnis erweitern sollte, damit es wieder eine bessere Passung zum komplexen Umfeld mit seiner Lebenswirklichkeit hat.

Meines Erachtens kann es daher Sinn machen, das Verständnis der Menschlichen Intelligenz im Sinne von Multiplen Intelligenzen nach Howard Gardner zu erweitern – auch in Bezug zur Künstlichen Intelligenz. Siehe dazu auch 

Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler

Über den Unsinn von Intelligenztests

Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.