Es ist deutlich zu erkennen, dass die Entwicklungen im Bereich der Künstlichen Intelligenz Auswirkungen auf den Bildungssektor haben. Die Frage ist nur, ob die sich daraus entstehenden Fragen nur aus der Perspektive von Tech-Unternehmen beantwortet werden sollten. Es ist meines Erachtens in diesem Zusammenhang gut, dass sich die UNESCO diesem Thema ausgewogen und unter einer globalen Perspektive angenommen hat.
UNESCO (2025): AI and the future of education. Disruptions, dilemmas and directions | LINK
Gleich im einleitenden Summary weist die UNESCO darauf hin, dass ein Drittel der Weltbevölkerung offline ist. Das wiederum hat Auswirkungen darauf, welches Wissen, welche Werte und welche Sprachen in den KI-Systemen, und somit auch in der KI-unterstützten Bildung, dominieren.
“Artificial intelligence (AI) is reshaping the way we learn, teach and make sense of the world around us, but it is doing so unequally. While one-third of humanity remains offline, access to the most cutting-edge AI models is reserved for those with subscriptions, infrastructure and linguistic advantage. These disparities not only restrict who can use AI, but also determine whose knowledge, values and languages dominate the systems that increasingly influence education. This anthology explores the philosophical, ethical and pedagogical dilemmas posed by disruptive influence of AI in education” (UNESCO 2025).
Ergebnis einer kleinen Befragung zum BMI in einer Organisation.
Jeder von uns kennt den Body Mass Index (BMI). Bei der Techniker Krankenkasse können Sie beispielsweise Ihren Body Mass Index online berechnen lassen: BMI-Rechner der TK. Dabei geht es – vereinfacht ausgedrückt – um das Verhältnis zwischen Körpergröße und Gewicht. Das Ergebnis zeigt beispielsweise an, ob jemand “übergewichtig” ist
Solche Verschwendungen stellen in vielen Organisationen eine Art “Übergewicht” auf allen Ebenen dar, die Gary Hamel und Michele Zanini als unnötige Bürokratie bezeichnen. Bürokratie bedeutet ja “Herrschaft der Verwaltung” (Quelle: Wikipedia). Bürokratische Strukturen sind nicht per se schlecht, sie sind nur dann ein Übel, wenn sie sich sich immer weiter unnötig verselbständigen.
“Unfortunately”, when confronted by unprecedented challenges, most companies and institutions prove timid, plodding and orthodox. The culprit is bureaucracy.” (Source: Gary Hamel and Michele Zanini).
Wenn also Bürokratie nach den beiden Autoren die Schuldige (culprit) ist, schlagen Hamel und Zanini vor, den Bureaucratic Mass Index (BMI) einer Organisation zu bestimmen. Dazu bieten sie eine einfache englischsprachige Website an. Starten Sie einfach, es sind keine persönlichen Daten einzugeben.
In der Abbildung oben finden Sie das Ergebnis, das sich für eine fiktive Organisation ergeben hat. Es ist zwar zugegebenermaßen eine sehr grobe Einschätzung, doch regt es an, weiter an weniger Bürokratie in der Organisation zu arbeiten. Nicht morgen oder übermorgen, sondern möglichst jetzt, denn die Dynamik im Umfeld Ihrer Organisation nicht nicht ab, sondern eher zu.
In der aktuellen Wahrnehmung der Themen in den öffentlichen und privaten Diskussionen geht es fast nur noch um die Möglichkeiten von technologischen Entwicklungen wie der Künstlichen Intelligenz. Es geht um die Entwicklung von Märkten, ganzer Branchen (Automobilindustrie, Landwirtschaft, Lebensmittel, Pharma…) und systemrelevanter Organisationen (Banken) usw. Darauf ist auch unsere Politik fokussiert. Lobbyisten gehen hier ein und aus, um die geplanten Gesetze im Sinne einer Branche oder eines großen Konzerns zu beeinflussen – was auch oft genug funktioniert. Es wundert einen schon, dass Politiker sich fragen, warum die Menschen kein Vertrauen mehr in ihre Arbeit haben.
An dieser Stelle muss ich etwas klarstellen: Ich bin Demokrat und überzeugter Europäer. Ich plädiere hier nicht für extreme politische Richtungen (links oder rechts).
All das ist eine Perspektive, in der sich einzelne Menschen, Gruppen von Menschen, oder auch ganze Gesellschaften anpassen, oder besser unterordnen sollen/müssen. Wehe, wenn sie das nicht machen, wie beispielsweise die Europäische Union, die sich doch mit dem EU AI ACT gegen die Forderungen der US-amerikanischen Politik und KI-Unternehmen stellt. Oder wenn sich kleine Künstler und Autoren darüber beschweren, dass ihnen die Large Language Models (LLMs) einfach so die Inhalte nehmen und damit Geld verdienen (Urheberrechte missachten). Aus den hier nur kurz zusammengefassten Entwicklungen, entsteht ein Bild, das in der eingangs dargestellten Grafik visualisiert ist.
Die Abbildung aus dem World Social Report 2025 der United Nations zeigt verschiedene Einflussfaktoren, die sich zu einem selbst-verstärkenden Generator vernetzen (Wirkungsnetz): Die aktuelle Situation in vielen Ländern hat zu immer mehr Misstrauen (Distrust) und zu mehr Polarisation (Polarization) geführt – und damit zu weniger Kooperationen (Lack of collective action) und zu einer politischen Lähmung (Policy paralysis). Daraus wiederum entstehen Ungleichheit (Inequality) und Unsicherheit (Unsecurity), was wieder zum Anfang führt usw.
Wie kommen wir aus dem Kreislauf heraus?
Es fängt damit an, auf allen Ebenen (Individuum, Gruppe, Organisation, Netzwerk, Gesellschaft) den Menschen mit seinen Anforderungen in den Mittelpunkt zu rücken.
Dass das aktuell nicht der Fall ist, möchte ich an einigen wenigen Beispielen aufzeigen: Ist es die Anforderung von Menschen, massenhaft industriell produzierte Lebensmittel angeboten zu bekommen, die teilweise krank machen, und bei dem ein großer Anteil auch noch weggeworfen wird? Im Gesundheitswesen bekommen viele Akteure nur Geld, wenn ich krank bin. Welches Interesse haben diese Akteure, dass ich gesund bin und gesund bleibe? Ähnliches kann man für das Bildungswesen oder für die politischen Strukturen formulieren. Ist es die Anforderung der Menschen, dass immer mehr politische Ebenen auf EU-, Bundes, Landes- und regionaler Ebene mit immer mehr Personal und unnötigen Schnittstellen aufgebaut werden? usw. usw. Es geht nicht um mehr Geld, sondern darum, die vorhandenen Ressourcen für das Wohl der menschlichen Gemeinschaft einzusetzen, und Strukturen, die im Industriezeitalter angemessen waren, an die heutige Lebenswirklichkeit anzupassen.
Heute können wir mit Hilfe neuer Technologien (Additive Manufacturing, Künstliche Intelligenz…) vieles davon erreichen. WIE so etwas aussehen kann, hat Japan schon vor einigen Jahren in der Society 5.0 skizziert und teilweise schon umgesetzt. Im April 2025 waren wir 10 Tage in Japan – auch auf der Expo 2025 in Osaka – wo Elemente des Konzepts gezeigt wurden.
In dem LinkedIn-Beitrag von Barbara Geyer (Hochschule Burgenland) erläutert die Autorin die Abbildung zu KI und Lernen noch etwas genauer. Es ist farblich gut zu erkennen, in welchen Bereichen Künstliche Intelligenz viel helfen kann (grün), begrenzt helfen kann (orange) und nicht helfen kann (rot). Dabei orientiert sich die Autorin an dem Helmke-Modell, einem Angebot-Nutzungs-Modell, und leitet die folgende zentrale Botschaft ab:
KI revolutioniert das ANGEBOT (Materialien, Tests, Feedback) aber LERNEN SELBST bleibt menschlich (Denken, Verstehen, Motivation).
In den Kommentaren zu dem LinkedIn-Beitrag gibt es viel Zustimmung, doch auch kritische Stimmen, die die Möglichkeiten Künstlicher Intelligenz in Lernprozessen hier eher unterschätzt sehen.
Ich finde diese Grafik zunächst einmal gut, da sie dazu anregt, darüber nachzudenken, was wir unter Lernen, bzw. unter menschlichem Lernen, verstehen, und wie wir damit umgehen wollen. Hinzu kommt dann noch die Einordnung Künstlicher Intelligenz als eine weitere Quelle zur Ermöglichung von Lernen – ganz im Sinne einer Ermöglichungsdidaktik. Siehe dazu auch Ist Wissenstransfer in ihrer Organisation wichtig? Wenn ja: Befassen Sie sich mit Erwachsenenbildung!
AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.
Jede Person möchte seine Persönlichkeit, seine Kompetenz kommunizieren. Das passiert im analogen Raum genauso wie in digitalen Räumen. Mit Hilfe von digitalen Medien transportiert jeder moderne Mensch Fragmente seiner Persönlichkeit in unterschiedlichen digitalen Räumen. Dabei kann es durchaus passieren, dass die im Digitalen Raum 1 dargestellte Person, sich von der im Digitalen Raum 2 unterscheidet.
Andererseits ist diese Perspektive auch reflexiv zu sehen, denn die Interaktionen und Kommunikationen mit anderen wirken durchaus auch auf die eigene, digitale und analoge Person zurück. Dazu passt ganz gut der folgende Text:
“Das dadurch repräsentierte Selbst muss jedoch nicht zwangsläufig dem realen, analogen Selbst entsprechen, sondern kann auf eine bewusst optimierte Repräsentation hinauslaufen oder eine fiktive andere Gestalt annehmen. Zudem können sich Subjekte in diversen digitalen Netzwerken unterschiedlich repräsentieren. Auch Laura Robinson argumentiert, dass das Subjekt anhand der digitalen Elemente ein „self-ing“ betreibe und sich sodann als „Cyberself“ (2007, S. 98) hervorbringe. Das Cyberself sei ein ephemeres Selbst, so Robinson, welches nur für kurze Zeit beständig, rasch änderbar und ohne langfristige Bedeutung sei, da es sich stets in Abhängigkeit zu Handlungen bilde (vgl. ebd.)” (Rathmann 2022).
Es stellt sich für mich die Frage, wie sich beispielsweise die immer stärkere Nutzung von KI-Modellen auf das analoge Selbst und das Cyberself auswirkt. Wenn die Richtung der kommunikativen Wechselwirkungen auch reflexiv ist, sind KI-Modelle durchaus persönlichkeitsverändernd.
Das kann einerseits positiv zur eigenen Entwicklung beitragen, oder eben auch nicht. Bei den, von den amerikanischen Tech-Konzernen entwickelten Modellen, habe ich so meine Bedenken, da diese Modelle ein Mindset repräsentieren, dass für Menschen, und ganze Gesellschaften gravierende negative Folgen haben kann.
Die Intransparenz der bekannten Closed Sourced Modelle wie ChatGPT von OpanAI oder Gemini von Google etc. oder auch das von Elon Musk beeinflusste Modell Grok von X repräsentieren eine Denkhaltung, die auf ein von Technologie dominiertes Gesellschaftssystem ausgerichtet sind. Es stellt sich die Frage, ob wir das so wollen.
Wenn es darum geht, die Auswirkungen der Künstlichen Intelligenz auf den Arbeitsmarkt zu prognostizieren, kommt es – wie immer – darauf an, wen man fragt.
Die eher technikorientierten Unternehmen verkaufen die angestrebte AGI (Artificial General Intelligence) als das non plus ultra der Intelligenzentwicklung. Dabei prognostizieren diese Unternehmen, dass AGI den menschlichen Fähigkeiten (Intelligenzen) überlegen sein wird. Daraus folgt zwingend, dass KI wohl alle arbeitsbezogenen Tätigkeiten in der nahen Zukunft übernehmen kann. Diese Argumentation erinnert mich an so viele Versprechen der Technik-Unternehmen; beispielsweise an die Unsinkbarkeit der Titanic oder die “100%-ige” Sicherheit von Kernkraftwerken, oder an die Verheißungen der Internetpioniere. Technologie muss wohl in dieser Form verkauft werden (Storytelling) – immerhin geht es ja um Investoren und sehr viel Geld. Ich weiß natürlich, dass diese Vergleiche “hinken”, dennoch …
Betrachten wir Künstliche Intelligenz mit seinen Möglichkeiten aus der eher gesamtgesellschaftlichen Perspektive, so sieht das etwas anders aus. Hier geht es darum, mit Hilfe der Künstlichen Intelligenz gesellschaftliche Probleme zu lösen, zum Wohle aller. Die Idee der japanischen Society 5.0 kommt diesem Anspruch sehr nahe. Da ich darüber schon verschiedene Blogbeiträge veröffentlich habe, gehe ich darauf nicht weiter ein. Siehe dazu beispielhaft Worin unterscheiden sich Industry 5.0 und Society 5.0?
Wie ist es dennoch möglich herauszufinden, wie sich Künstliche Intelligenz auf dem Arbeitsmarkt bemerkbar macht, bzw. machen wird?
Als Leser unseres Blogs wissen Sie, dass ich bei solchen Fragestellungen immer dazu tendiere, belastbare wissenschaftliche Studien von unabhängigen Forschern heranzuziehen. Eine dieser Studie ist folgende. Darin sind sehr ausführlich Vorgehensweise, Datenanalysen und Erkenntnisse dargestellt, mit einer zu beachtenden Einschränkung: Es geht um den amerikanischen Arbeitsmarkt.
“First, we find substantial declines in employment for early-career workers in occupations most exposed to AI, such as software development and customer support.
Second, we show that economy-wide employment continues to grow, but employment growth for young workers has been stagnant.
Third, entry-level employment has declined in applications of AI that automate work, with muted effects for those that augment it.
Fourth, these employment declines remain after conditioning on firm-time effects, with a 13% relative employment decline for young workers in the most exposed occupations
Fifth, these labor market adjustments are more visible in employment than in compensation.
Sixth, we find that these patterns hold in occupations unaffected by remote work and across various alternative sample constructions”
Source: Brynjolfsson et al. (2025): Canaries in the Coal Mine? Six Facts about the Recent Employment Effects of Artificial Intelligence | PDF
Herausheben möchte ich hier, dass gerade junge Menschen, die in den Arbeitsmarkt kommen und noch keine domänenspezifische Expertise entwickeln konnten, von Künstlicher Intelligenz betroffen sind. Das ist in mehrerer Hinsicht bemerkenswert.
Einerseits scheint Expertise nicht so leicht durch KI ersetzbar zu sein, was wiederum für erfahrene, auch ältere Mitarbeiter spricht. Diese sollten natürlich Künstliche Intelligenz nutzen und nicht ablehnen.
Der Wissensbegriff hat sich in den letzten Jahrzehnten verändert, und damit auch erweitert. Arnold hat beispielsweise von einem neuen Wissensbegriff gesprochen und plädiert für eine Art von Wissenskompetenz.
Mit den Möglichkeiten der Künstlichen Intelligenz wird der Umgang mit Wissen noch dynamischer – vormals eher personales Wissen wird immer mehr zu einem öffentlichen Wissen. Dabei ist bemerkenswert, dass die Menschen den Ergebnissen der KI-Modellen durchaus vertrauen, obwohl diese nachweislich fehlerhaft sind. Siehe dazu Künstliche Intelligenz: Halluzinationen und der Bullshit-Faktor – eine Art Künstliche Dummheit? Dieses sehr unkritische Verhalten führt zu einer Entwertung des personalen Wissens
“Menschen ziehen sich infolge von KI zunehmend aus der Generierung personalen Wissens zurück und begnügen sich mit der Überwachung und Validierung KI-generierten öffentlichen Wissens. Der Einsatz von KI und ein übermäßiges Vertrauen in die Qualität KI generierter Inhalte reduzieren zudem die Bereitschaft zum kritischen Denken. Mit wachsendem Vertrauen in KI verschlechtert sich kritisches Denken, während Zuversicht in Bezug auf die eigene Expertise kritisches Denken stärkt” (Reinmann, Preprint. Erscheint in: Dittler, U. & Kreidl, C. (in Druck). Fragen an die Hochschuldidaktik der Zukunft. Schäffer-Poeschel).
Die stärkere Nutzung der KI-Möglichkeiten führt also letztendlich zur Reduzierung des kritischen Denkens, wobei das Vertrauen in die eigene Expertise eher das kritische Denken fördert.
Wir sollten daher nicht “blind” den Verheißungen der Tech-Industrie hinterherrennen, sondern auf Basis unserer eigenen Expertise durchaus kritisch mit den Ergebnissen der KI umgehen. Siehe dazu beispielsweise Kritisches Denken genauer betrachtet. Darin werden u.a. die affirmative (bestätigende) Wissenskonstruktion und das kritische Denken gegenübergestellt.
Eigener Screenshot: Videokonferenz mit Nextcloud Talk auf unserem Server
Heute hatte ich eine Videokonferenz mit Kollegen aus verschiedenen Ländern. Dabei haben wir statt Zoom oder MS Teams bewusst Nextcloud Talk genutzt, das Bestandteil der Nextcloud-Installation auf unseren Servern ist. Nextcloud ist Open Source und führt zu einer Digitalen Souveränität – auch bei Videokonferenzen. Die Daten bleiben dabei alle auf unseren Servern.
Inhaltlich ging es bei der Videokonferenz um die nächste MCP-Konferenz, die im September 2026 stattfinden soll – die Vorfreude ist bei mir schon jetzt vorhanden. Siehe dazu auch die Konferenz-Website oder unsere Übersichtsseite zu Konferenzen.
Die Abbildung zeigt einen Screenshot zu dem Zeitpunkt, an dem ich eine Videokonferenz (Anruf) in Nextcloud Talk gestartet habe. Den Link zu dem Raum habe ich dann an die Teilnehmer gesandt, die keine weitere Installationen benötigen, um teilzunehmen. Natürlich können auch Videokonferenzen terminiert, und dazu eingeladen werden. Wie dem Screenshot zu entnehmen ist, sind die aus anderen Videokonferenz-Tools bekannten Aktivitäten integriert – ich möchte diese daher hier nicht mehr ausführlich erläutern.
Nextcloud Talk ist dabei in eine komplette Kollaborationsplattform (inkl. Open Project, Deck als Board, Cloud als Datenspeicher, kollaboratives Arbeiten an Dateien, Whiteboard usw. usw.) integriert, die einen souveränen Arbeitsplatz unterstützt – alles Open Source, und die Daten bleiben auf dem eigenen Server.
Darüber hinaus haben wir auch LocalAI integriert, und die Möglichkeit geschaffen, KI-Agenten zu entwickeln und zu nutzen – alles Open Source, alle Daten bleiben auf unseren Servern.
In Organisationen kommt es immer wieder zu der Frage, ob Routineprozesse (Exploration) oder eher Innovationen (Exploitation) in den Fokus organisationaler Entwicklung stehen sollten. In der Zwischenzeit wird deutlich, dass beides in einer Organisation wechselseitig bewältig und entwickelt werden sollten. Diese Ambidextriehatte ich schon einmal in dem Blogbeitrag Ambidextres Innovationsmanagement: Zwischen Exploration und Exploitation erläutert.
Es stellt sich natürlich gleich die Frage, wie eine geeignete Strategie gerade für Digitale Innovationen aussehen kann. Forscher vom Fraunhofer Institut Stuttgart und der Universität Stuttgart sind der Frage anhand von Literaturrecherchen und Interviews nachgegangen und haben ihre Erkenntnisse veröffentlicht:
Schrader et al. (2025): Organizing digital innovations. Journal of Open Innovation: Technology, Market, and Complexity 11 (2025) | Link
Ein Ergebnis war, dass organisationale Ambidextrie eine wichtige Voraussetzung für Digitale Innovationen darstellt. Weiterhin haben die Forscher in ihrem Paper ein Framework dargestellt, das einer Organisation hilft, die geeignete Strategie auszuwählen und umzusetzen.
Ergänzend sollte noch erwähnt sein, dass organisationale Ambidextrie auch sehr viel von den Menschen einfordert. Es ist nicht leicht, permanent zwischen den “beiden Welten” zu pendeln.
Conceptual technology illustration of artificial intelligence. Abstract futuristic background
KI-Anwendungen basieren oft auf Trainingsdaten, sogenannter Large Language Models (LLM). Um die Leistungsfähigkeit und die Qualität der Antworten von solchen Systemen zu verbessern, wurde inzwischen ein “Denkprozess” (Reasoning) vor der Ausgabe der Antwort vorgeschaltet. Siehe dazu ausführlicher What are Large Reasoning Models (LRMs)?
Die Frage stellt sich natürlich: Liefern LRMs wirklich bessere Ergebnisse als LLMs?
In einem von Apple-Mitarbeitern veröffentlichten, viel beachteten Paper wurde nun die Leistungsfähigkeit nicht aufgrund logisch-mathematischer Zusammenhänge alleine untersucht, sondern anhand von drei Komplexitätskategorien – mit überraschenden Ergebnissen:
“Recent generations of language models have introduced Large Reasoning Models (LRMs) that generate detailed thinking processes before providing answers.. (…) By comparing LRMs with their standard LLM counterparts under same inference compute, we identify three performance regimes: (1) low-complexity tasks where standard models outperform LRMs, (2) medium-complexity tasks where LRMs demonstrates advantage, and (3) high-complexity tasks where both models face complete collapse”
Source: Shojaee et al. (2025): The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity.
In Zukunft werden immer mehr hoch-komplexe Problemlösungen in den Mittelpunkt von Arbeit rücken. Gerade in diesem Bereich scheinen LLMs und sogar LRMs allerdings ihre Schwierigkeiten zu haben. Ehrlich gesagt, wundert mich das jetzt nicht so sehr. Mich wundert eher, dass das genannte Paper die KI-Welt so aufgewühlt hat 🙂 Siehe dazu auch Was sind eigentlich Multi-Kontext-Probleme?
Sicher werden die Tech-Unternehmen der KI-Branche jetzt argumentieren, dass die nächsten KI-Modelle auch diese Schwierigkeiten meistern werden. Das erinnert mich an unseren Mercedes-Händler, der ähnlich argumentierte, sobald wir ihn auf die Schwachstellen des eingebauten Navigationssystems hingewiesen hatten: Im nächsten Modell ist alles besser.
Technologiegetriebene Unternehmen – insbesondere KI-Unternehmen – müssen wohl so argumentieren, und die Lösungen in die Zukunft projizieren – Storytelling eben, es geht immerhin um sehr viel Geld. Man muss also daran glauben….. oder auch nicht.