Lean Innovation nach Schuh (2011); eigene Darstellung
Der Lean-Gedanke, also Verschwendung zu vermeiden und den Wertstrom zu optimieren, kann in allen Prozessen thematisiert und integriert werden. Dazu hatte ich in 2013 schon einmal einen Blogbeitrag geschrieben: Lean Innovation – Wie passt das zusammen?
Auf unserer Asienreise waren wir u.a. vom 15.04.-25.04.2025 in Tokyo, Kyoto und Osaka (mit Expo 2025). Dabei ist mir der Lean-Gedanke in allen Bereichen des gesellschaftlichen Lebens begegnet. Eben nicht nur theoretisch, sondern sehr praktisch – inkl. der Ausrichtung am Kundennutzen – sehr beeindruckend.
Es wundert daher nicht, dass der Lean-Gedanke auch im Projektmanagement, oder auch im Innovationsmanagement berücksichtigt werden kann. Prof. Schuh hat für Lean Innovationauf dieser Website 12 Schritte (Abbildung) ausführlich beschrieben.
Es ist wichtig, da alle wirtschaftlichen Bereiche stärker auf die Produktivität achten müssen – gerade in Zeiten vieler neuer technischen Möglichkeiten.
In Deutschland haben wir manchmal ein etwas schwieriges Verhältnis zu einzelnen Begriffen. So ist es beispielsweise mit dem Begriff “Fehler“, der oft negativ besetzt ist. Wenn ein Fehler passiert, ist das (oft) nichts Gutes – so die allgemeine Meinung.
Zu dieser Perspektive beigetragen hat die aus dem Qualitätsmanagement bekannte “0-Fehler” Strategie, die sich in den Köpfen von Mitarbeitern eingeprägt hat. Wenn wir an Prozesse in der Produktion denken, die immer gleich ablaufen sollen, so ist es natürlich schlecht, wenn es zu größeren Abweichungen kommt. Auch Fehler von Chirurgen können Folgen haben usw.. Man kann Fehler allerdings auch anders sehen.
In der Abbildung sind verschiedene Fehlertypen so sortiert, dass nach oben Fehler eher vermieden werden sollten, und nach unten Fehler zu Verbesserungen, und sogar zu Innovationen führen können. Es liegt auf der Hand, dass beispielsweise “Sabotage” nicht toleriert und somit sanktioniert werden sollte. Andererseits sollten “Kreative Fehler” toleriert, ja sogar unterstützt und durch Experimentieren ermöglicht werden.
Die Übersicht zeigt, dass Fehler nicht gleich Fehler ist, und wir daher in Organisationen und auch im zwischenmenschlichen Bereich sinnvoll unterscheiden sollten. Gerne können Sie daraus nun eine eigene Übersicht für Ihre Organisation entwickeln, sodass sich die Mitarbeiter darin wiederfinden und möglicherweise eine neue Fehlerkultur in Ihrer Organisation entsteht.
Böhle et al. 2011:21; entnommen aus Huchler 2016:62
In dem Blogbeitrag Arbeitshandeln enthält explizites und implizites Wissen aus dem Jahr 2016, habe ich die Zusammenhänge zwischen Arbeitshandeln und dem expliziten “objektivierbaren” Wissen, bzw. impliziten subjektivierenden” Wissen dargestellt und erläutert.
Setzen wir doch einmal diese Zusammenhänge neu in Verbindung mit den Diskussionen darüber, ob Künstliche Intelligenz Arbeitsplätze, oder ganze Berufe ersetzen wird. Es wird dabei gleich deutlich, dass es in der Diskussion nicht darum geht, Arbeitsplätze oder Berufe durch Künstliche Intelligenz zu ersetzen, sondern darum, das Arbeitshandeln unter den neuen technologischen Möglichkeiten zu untersuchen.
Nach Böhle (2011) zeigen technische und organisatorische Komplexität Grenzen der wissenschaftlich-technischer Beherrschung auf, und zwar in Bezug auf Unwägbarkeiten im Arbeitshandeln.
Sind Unwägbarkeiten die Normalität, benötigt das Arbeitshandeln das Erfahrungswissen von Personen (Subjekte), im Sinne des erfahrungsgeleiteten-subjektivierenden Handelns (vgl. Böhle 2011).
Die Tech-Konzerne argumentieren mit ihren neuen und neuesten KI-Modellen, dass Technologie das gesamte Arbeitshandeln in diesem Sinne einmal abbilden kann. Diese Perspektiven sind möglicherweise für die schnelle Marktdurchdringung und für das Einsammeln von Kapital wichtig (Storytelling), doch greift dieser Ansatz bisher nur bei sehr begrenzten Tätigkeitsportfolios komplett.
Natürlich wird weiter argumentiert, dass sich die Technik weiterentwickelt und es nur eine Frage der Zeit ist, bis das komplette Arbeitshandeln technologisch abgebildet ist. Es ist durchaus zu erkennen, dass KI-Modelle durchaus in der Lage sind bestimmte Merkmale des subjektivierenden Arbeitshandeln abbilden kann. Daraus entstand auch der Glaube an eine Art Allgemeine Generelle Intelligenz (AGI), die der menschlichen Intelligenz überlegen sei.
Durch solche Ideen verschiebt sich der Nachweis für die aufgestellte These immer weiter in die Zukunft, und wird zu einem Glaubensbekenntnis. Möglicherweise handelt es sich bei dem geschilderten Denkmuster um eine Art Kategorienfehler?
Zu der Aussage von Peter Drucker habe ich schon 2007 einen Blogbeitrag geschrieben. Damals ging es mir darum herauszustellen, dass es in der Zwischenzeit viele Möglichkeiten gibt, einzelne Anforderungen von Kunden massenhaft so anzubieten, dass die Preise für Produkte und Dienstleistungen denen einer massenhaften Produktion entsprechen. Diese hybride Wettbewerbsstrategie heißt Mass Customization.
Inzwischen frage ich mich allerdings, warum die Möglichkeiten nicht genutzt werden, und ob die Aussage von Peter Drucker aus dem Jahr 1954 noch stimmt.
Der Trend bei den Unternehmen geht eher dahin, die Kundenanforderungen in die vom Unternehmen gewünschte Richtung zu manipulieren und letztendlich sogar auch teilweise zu ignorieren. Zahlreiche Beispiele belegen das in der Zwischenzeit.
Aus dieser Gemengelage entstehen verschiedene Optionen. Einerseits lassen sich Kunden einfach weiter manipulieren und denken darüber gar nicht mehr nach. Andererseits gibt es immer mehr Kunden, die sich nach Alternativen umsehen. Darüber hinaus gibt es eine immer größer werdende Gruppe von Personen, die sich die von ihnen gewünschten Produkte selbst entwickeln und herstellen -teilweise auch in Communities.
Die neuen Möglichkeiten der Künstlichen Intelligenz führen dazu, dass viele Einzelpersonen Software beispielsweise selbst entwickeln. Dabei stellen diese Personen oftmals ihren Quell-Code anderen kostenfrei zur Verfügung > Open Source Software.
Auch physische Produkte können heute mit Hilfe von additiven Verfahren (Additiv Manufacturing, besser bekannt unter 3D-Druck) hergestellt werden, Dabei stellen auch hier Personen ihre Programme, oder auch ganze Produkte anderen zur Verfügung. Die Plattform Patient Innovation ist hier ein gutes Beispiel.
Es geht vielen Menschen nicht nur darum, dass ihre eigenen Bedürfnisse besser erfüllt werden, sondern auch oft darum, anderen etwas – oft kostenfrei – zur Verfügung zu stellen – alles, ohne dass Unternehmen eingebunden werden (müssen), die sich ja eher zu Organisationen entwickelt haben, die ihren eigenen Wert, und nicht die Werte der Kunden, steigern möchten.
Diese eher soziale Art Werte für alle zu schaffen zeigt, dass es heute schon – und in Zukunft immer mehr – kollaboratives, nachhaltiges und gemeinwohlorientiertes Wirtschaften gibt. Alles zu einem immer größeren Teil ohne die subtile “Marktorientierung” scheinbar systemrelevanter Organisationen.
Denn: Wozu benötigen wir Unternehmen, wenn die Transaktionskosten in immer mehr Bereichen für die eigene, individuelle Wertschöpfung gegen 0 gehen…? In diesem Sinne könnte es sein, dass das Zitat von Peter Drucker aus dem Jahr 1954 in Zukunft doch wieder seine Berechtigung hat.
Manchmal wundert man sich, warum einzelne Industrien “das Rad neu erfinden”, obwohl es die jeweilige Problemlösung doch schon in anderen Branchen / Industrien gibt. Anhand der Abbildung sind die verschiedenen Möglichkeiten illustriert.
Ist in der Industrie I ein Problem erkannt worden, so kann im ersten Schritt der Abstraktion im Lösungsraum eine Analogie (2. Schritt) zu einer Problemlösung in der Industrie II gefunden werden. Diese findet man in dem Bereich, in denen sich die beiden Lösungsräume von Industrie I und Industrie II überschneiden,. Im dritten Schritt der Adaption (3.) wird die Problemlösung aus der Industrie II für das Problem in Industrie I angewendet. Hört sich einfach an, ist es allerdings nicht immer.
Je kontextabhängiger das für die Problemlösung erforderliche Wissen ist, umso schwieriger ist das Wissen auf einen anderen Kontext (hier: eine andere Industrie) zu übertragen. Es handelt sich dabei um sogenanntes “Träges Wissen”.
Weiterhin benötigt man für eine bestimmte, komplexe Problemlösung (z.B. für Innovationen) oftmals die Expertise bestimmter Personen mit ihrem Erfahrungsschatz. Diese Expertise hängt wiederum mit dem impliziten Wissen zusammen, das nicht so einfach übertragbar ist.
Dennoch ist es natürlich nicht unmöglich, von anderen Industrien für komplexe Problemlösungen zu lernen – es ist allerdings auch nicht so einfach, sobald man die dahinterliegende Wissensperspektive betrachtet.
Manchmal könnte man der Meinung sein, dass es kaum noch Möglichkeiten gibt, etwas Neues auf den Markt zu bringen, doch das ist natürlich ein Trugschluss. Beispielhaft möchte ich dazu folgendes Zitat erwähnen:
“Es gibt nichts Neues mehr. Alles, was man erfinden kann, ist schon erfunden worden. “ Charles H. Duell, US-Patentamt 1899
Da stellt sich natürlich gleich die Frage: Wo sind die neuen Produkte, neuen Dienstleistungen, neuen Märkte, und wie finde ich diese?
Dass das nicht so einfach ist, haben Innovationstheorien und -modelle schon ausführlich dargestellt. Dabei hat sich der Begriff der “blinden Flecke” etabliert. Gerade große Organisationen sehen einfach nicht mehr das Offensichtliche. Diese Wahrnehmungshemmung kann mit der Theorie der Pfadabhängigkeit erklärt werden.
Diese Gemengelage führt zwangsläufig zur nächsten Frage: Wie kann ein Unternehmen (oder auch eine einzelne Person) Bereiche finden, die noch nicht besetzt sind?
Solche weiße Flecken – White Spots – können relativ systematisch mit einem entsprechenden Prozess abgebildet und untersucht werden (Abbildung). Mit den heute vorhandenen Möglichkeiten der Künstlichen Intelligenz (GenAI) können Sie
Leistung: grundsätzlich fix Dauer: ausgerichtet an der Leistungserbringung Kosten: ausgerichtet an der Leistungserbringung
Leistung: ausgerichtet an der Dauer und dem Machbaren Dauer: grundsätzlich fix Kosten: grundsätzlich fix (Personalkosten)
Planung
Phasen, Meilensteine, Arbeitspakete, Liefergegenstände/-objekte Up-Front, aber rollierend möglich
Releases, Epics, Features, User Stories, Inkremente grundsätzlich rollierend
Aufwand (Personal)
Schätzung im Gegenstromverfahren (Management, Experten) in Personentagen Up-front, dann ggf. nachsteuernd
Schätzung durch das Team in Story Points
rollierend
Steuerungs- instrumente
Fortschrittsmetriken, Meilensteintrendanalyse, Earned Value Analyse Status Meeting, Berichte
Acceptance of Done, Taskboard, Burn-Down-/-Up-Chart
Sprint-Review, Daily Stand Up
Hüsselmann/Hergenröder (2024): Integrierte Earned Value Analyse, nach Fiedler (2020)
Das klassische, eher plangetriebene Vorgehen beim Projektmanagement ist seit vielen Jahren bekannt und etabliert. Es wundert daher nicht, dass es gerade etablierten Organisationen schwer fällt, die beim agilen Projektmanagement zu berücksichtigen Vorgehensweise zu integrieren..
Die in der Tabelle zusammengefasste Gegenüberstellung der Merkmale “Anforderungen”, “Umfang (Scope”, “Ziele”, “Planung”, “Aufwand (Scope)” und “Steuerungsinstrumente” gibt Ihnen noch einmal einen Gesamtüberblick dazu.
Dabei sollten Sie allerdings bedenken, dass es oft nicht um ein Entweder-oder, sondern um ein Sowohl-als-auch geht, was als Hybrides oder auch Adaptives Projektmanagement bezeichnet werden kann.
Speech bubbles, blank boards and signs held by voters with freedom of democracy and opinion. The review, say and voice of people in public news adds good comments to a diverse group.
Der Trend zur Individualisierung hat eine gesellschaftliche und ökonomische Dimension. Dabei bestimmen neue technologische Möglichkeiten, wie z-B- die Künstliche Intelligenz, deutlich die Richtung der Veränderungen. Technologie war schon in der Vergangenheit immer wieder Treiber für solche Entwicklungen – mit all seinen Risiken und Möglichkeiten.
Dabei ging es in der Vergangenheit beispielsweise im ökonomischen Sinne darum, Produkte und Dienstleistungen immer stärker an das Individuum anzupassen – ganz im Sinne von Customization, Personalization, Mass Customization, Mass Personalization etc. – ganz im Sinne von Unternehmen.
Andererseits bieten neue Technologien wie Künstliche Intelligenz, Additive Manufacturing (3D-Druck), Robotik usw. auch neue Möglichkeiten für jeden Einzelnen, da die Kosten für diese Technologien teilweise sogar gegen “0” gehen. Beispiel im Softwarebereich: sind Open Source Projekte, oder im Innovationsbereich die vielen Open Innovation Projekte. Dabei meine ich bewusst den Ansatz von Eric von Hippel “Democratizing Innovation,” bzw. “Free Innovation”. Siehe dazu auch Künstliche Intelligenz und Open Innovation.
Immer mehr Menschen nutzen die neuen Möglichkeiten und kreieren ihre eignen Bilder, Beiträge, Videos oder eben Produkte und Dienstleistung mit Hilfe von Künstlicher Intelligenz, Additive Manufacturing (3D-Druck) und Robotik. Dabei geht es den Personen nicht in erster Linie darum, damit geschäftlich aktiv zu sein. Es geht am Anfang oft um das spielerische experimentieren mit den neuen Chancen.
Manche Personen stellen ihre Kreationen anderen zur Verfügung, z.B. auf Plattformen wie Patient Innovation. Alles, um unsere Gesellschaft einfach etwas besser, menschlicher zu machen. Dazu habe ich folgenden Text in einer Veröffentlichung der Initiative2030 gefunden:
“Wir glauben an einen aufgeklärten „Ich-Begriff“, bei dem die ausgiebige Beschäftigung dem Inneren weder das Ego füttern, noch ein um sich selbst kreisen anfeuern muss. In der Logik der Dichotomie der Kontrolle setzen wir uns dafür ein, dass handelnde Individuen ihren Einfluss auf die Dinge, die ihnen am wichtigsten sind, perspektivisch gewaltig ausbauen können. Wenn sie sich dann noch mit anderen zusammentun, können alternative Zukünfte gestaltet werden” (Initiative2030 (2025): Missionswerkstatt. Das Methodenhandbuch | PDF).
Ich bin auch der Meinung, dass einzelne Personen heute und in Zukunft mit Hilfe der neuen technischen Möglichkeiten, die täglichen und wichtigen Probleme von Menschen lösen können. Alleine und natürlich im Austausch mit anderen. Ob es dazu das oben verlinkte Methodenhandbuch bedarf sei dahingestellt. Dennoch: Für manche ist es gut, einen kleinen Leitfaden zum Thema zu haben.
Dabei steht nicht der Profit im Mittelpunkt, sonderndas soziale Miteinander zum Wohle aller.
In vielen Blogbeiträgen habe ich darauf hingewiesen, dass es kritisch ist, Closed Sourced Modelle für KI-Anwendungen (GenAI) zu nutzen. Die hinterlegten Trainingsdaten können kritisch sein und auch das Hochladen eigener Daten sollte bei diesen Modellen möglichst nicht erfolgen. Siehe dazu Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.
In der Zwischenzeit ist es mit Hilfe vonInstructLab möglich, vorhandene LLMs mit eigenen Daten zu trainieren. Dabei handelt sich um eine Initiative von Redhat und IBM – weiterführende Informationen dazu finden Sie bei Hugging Fcae.
Wie funktioniert InstructLab? Das Prinzip ist relativ einfach: Ein bestehendes Modell (LLM) wird mit Hilfe von InstructLab und eigenen Daten erweitert, spezifiziert und trainiert – alles unter eigener Kontrolle und Open Source.
“InstructLab can augment models though skill recipes used to generate synthetik data for tuning. Experiments can be run locally on quantized version of these models” (InstructLab-Website).
In einem ausführlichen, deutschsprachigen artikel erklärt Redhat noch einmal die Zusammenhänge: “Unternehmen können die InstructLab-Tools zum Modellabgleich auch nutzen, um ihre eigenen privaten LLMs mit ihren Kompetenzen und ihrem Fachwissen zu trainieren” (Redhat vom 10.03.2025).
Es ist für mich entscheidend, dass diese Initiative Open Source basiert, nicht auf bestimmte Modelle beschränkt, und lokal angewendet werden kann.
In den letzten Jahren habe ich schon viele Beiträge zum Hybriden Projektmanagement geschrieben. In der Zwischenzeit nehmen auch die Diskussionen um Normen, Standards und Vorgehensmodelle diese Entwicklung auf. Im Vorfeld des IPMA World Congress (17.-19.09.2025 in Berlin) ist zum Beispiel folgendes zu Trendthemen zu lesen:
“Die zunehmende Komplexität von Projekten und unsichere Rahmenbedingungen machen flexible Lösungen notwendig. Hybride Modelle erlauben schnelle Reaktionen auf Veränderungen, ohne die organisatorische Stabilität zu gefährden. Auch große Unternehmen wie IBM und Microsoft berichten von positiven Erfahrungen: Effizientere Projektabläufe und zufriedenere Teams nach Einführung hybrider Ansätze. Hybrides Projektmanagement entwickelt sich damit vom Trend zum neuen Standard. Es kombiniert Planungsdisziplin mit Agilität – und macht Projekte robuster gegenüber externen Einflüssen. Ein klarer Wettbewerbsvorteil” (Wieschowski 2025, in projektmanagementaktuell 3/2025).
Dass Hybrides Projektmanagement der neue Standard sein soll ist zwar gut und richtig, doch gibt es noch gar keinen Standard zum Hybriden Projektmanagement.
Translate »
Diese Website benutzt Cookies. Wenn du die Website weiter nutzt, gehen wir von deinem Einverständnis aus.