Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren

An AI router that understands the capabilities of models in its library directs
a given inference request to the best model able to perform the task at hand (Thomas et al. 2025)

Wenn es um die bei der Anwendung von Künstlicher Intelligenz (GenAI) verwendeten Trainingsmodelle geht, stellt sich oft die Frage, ob ein großes Modell (LLM: Large Language Model) für alles geeignet ist – ganz im Sinne von “One size fits all”. Siehe dazu diesen Blogbeitrag zu den Vorteilen und Nachteilen dieser Vorgehensweise.

Eine andere Herangehensweise ist, mehrere spezialisierte kleinere Trainingsmodelle (SLM: Small Language Models) zu verwenden, die verschiedene Vorteile bieten. Siehe dazu Künstliche Intelligenz: Vorteile von Small Language Models (SLMs).

Neben den genannten Extremen gibt es noch Modelle, die dazwischen anzusiedeln sind, und daher als “midsized” bezeichnet werden können.

Diese drei Möglichkeiten sind beispielhaft in der Abbildung unter “Sample of model ecosystem” zusammengefasst. Erfolgt also eine neue Anfrage über den “New data point” an den AI Router, so kann der vorher trainierte AI Router das geeignete Trainingsmodell (Small, Midsized, Large) zuweisen.

Die Autoren (Thomas et al. 2025) konnten in verschiedenen Tests zeigen, dass ein guter Mix an geeigneten Modellen, zusammen mit einem gut trainierten AI Router bessere und wirtschaftlichere Ergebnisse erzielt.

Die Vorteile liegen auf der Hand: Sie sparen Geld, reduzieren die Latenz und helfen der Umwelt. Diese Punkte sind gerade für Kleine und Mittlere Unternehmen (KMU) interessant.

GPM (2025): Künstliche Intelligenz im Projektkontext – Studie

Es ist schon eine Binsenweisheit, dass Künstliche Intelligenz (GenAI) alle Bereiche der Gesellschaft mehr oder weniger berühren wird. Das ist natürlich auch im Projektmanagement so. Dabei ist es immer gut, wenn man sich auf verlässliche Quellen, und nicht auf Berater-Weisheiten verlässt.

Eine dieser Quellen ist die Gesellschaft für Projektmanagement e.V., die immer wieder Studien zu verschiedenen Themen veröffentlicht. In der Studie GPM (2025): Gehalt und Karriere im Projektmanagement. Sonderthema: Die Anwendung Künstlicher Intelligenz im Projektmanagement findet sich auf Seite 13 folgende Zusammenfassung:

Künstliche Intelligenz im Projektkontext
Künstliche Intelligenz (KI) wird im Bereich Projektmanagement in der Mehrheit der Unternehmen eingesetzt, allerdings in noch geringem Maße.
(1) KI-basierte Tools werden insgesamt eher selten genutzt, wenn sie zum Einsatz kommen, dann sind es hauptsächlich ChatGPT, Jira, MS Pilot oder eigenentwickelte Tools.
(2) Es zeichnet sich kein eindeutiger Projektmanagement-Bereich ab, in dem KI bevorzugt zum Einsatz kommt. Am deutlichsten noch in der Projektplanung und in der Projektinitiierung, am seltensten im Projektportfolio- und im Programmmanagement.
(3) Der Nutzen der KI wird tendenziell eher positiv gesehen, insbesondere als Unterstützung der alltäglichen Arbeit, zur Erleichterung der Arbeit im Projektmanagement und zur Erhöhung der Produktivität.
(4) Der Beitrag von KI zu einem höheren Projekterfolg wird von der Mehrheit der Befragten nicht gesehen – allerdings nur von einer knappen Mehrheit.
(5) Es besteht eine grundlegende Skepsis gegenüber KI, was verschiedene Leistungsparameter im Vergleich zum Menschen betrifft. Alle hierzu gestellten Fragen wie Fehleranfälligkeit, Genauigkeit, Konsistenz der Information oder Konsistenz der Services wurden mehrheitlich zu Gunsten des Menschen bewertet.
(6) Die überwiegende Mehrheit der befragten Projektmanagerinnen und Projektmanager teilt diverse Ängste gegenüber der KI nicht, wie z. B. diese werde Jobs vernichten oder dem Menschen überlegen sein.”
Quelle: GPM (2025). Anmerkung: Im Originaltext wurden Aufzählungszeichen verwendet. Um besser auf einzelnen Punkte einzugehen, habe ich diese nummeriert, was somit keine Art von Priorisierung darstellt.

An dieser Stelle möchte ich nur zwei der hier genannten Ergebnisse kommentieren:

Punkt (1): Es wird deutlich, dass hauptsächlich Closed Source Modelle verwendet werden. Möglicherweise ohne zu reflektieren, was mit den eigenen Daten bei der Nutzung passiert – gerade wenn auch noch eigene, projektspezifische Daten hochgeladen werden. Besser wäre es, ein Open Source basiertes KI-System und später Open Source basierte KI-Agenten zu nutzen. Dazu habe ich schon verschiedene Blogbeiträge geschrieben. Siehe dazu beispielhaft Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Punkt (6): Es geht bei der Nutzung von KI nicht immer um die “Vernichtung” (Was für ein schreckliches Wort) von Jobs, sondern darum, dass viele verschiedene Aufgaben (Tasks) in Zukunft von KI autonom bearbeitet werden können. Siehe dazu auch The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen.

The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen

Quelle: Xu et al. (2025): The Agent Company | https://the-agent-company.com/

Es ist mehr als eine interessante Spielerei von KI-Enthusiasten: KI-Agenten (AI-Agents) können immer mehr Aufgaben in einem Unternehmen autonom übernehmen. Um das genauer zu untersuchen, haben Wissenschaftler in dem Paper

Xu et al. (2025): TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks

wichtige Grundlagen dargestellt, und auch untersucht, welche Tasks in einem Unternehmen von KI-Agenten autonom übernommen werden können.

Wie in der Abbildung zu erkennen ist, wurden Mitarbeiterrollen simuliert (Engineer, CTO, HR) und verschiedene Tasks angenommen. Bei dem Admin beispielsweise “arrange meeting room” und bei dem Projektmanager (PM) “teams sprint planning”, was auf das Scrum Framework hinweist. Als Modelle für Trainingsdaten wurden Large Language Models (LLMs) genutzt – closed source und open weight models:

“We test baseline agents powered by both closed API-based and open-weights language models (LMs), and find that the most competitive agent can complete 30% of tasks autonomously” (Xu et al (2025).

Es wird zwar ausdrücklich auf die Beschränkungen (Limitations) hingewiesen, doch gibt diese Untersuchung konkrete Hinweise darauf, welche Aufgaben (Tasks) in Zukunft möglicherweise von KI-Agenten in Unternehmen übernommen werden können.

Interessant bei dem Paper ist, dass dazu auch eine ausführliche Website https://the-agent-company.com/ aufgebaut wurde, auf der Videos, inkl. der verschiedenen KI-Agenten zu finden sind. Interessiert Sie das? Wenn ja, nutzen Sie einfach den Quick Start Guide und legen Sie los!

Natürlich sollte jedes Unternehmen für sich herausfinden, welche Tasks von KI-Agenten sinnvoll übernommen werden sollten. Dabei wird schon deutlich, dass es hier nicht darum geht, ganze Berufe zu ersetzen, sondern ein Sammelsurium von unterschiedlichen Tasks (Ausgaben) autonom durchführen zu lassen.

Hervorzuheben ist aus meiner Sicht natürlich, dass die Autoren mit dem letzten Satz in ihrem Paper darauf hinweisen, dass die Nutzung von Open Source AI in Zukunft ein sehr vielversprechender Ansatz sein kann – aus meiner Sicht: sein wird!

“We hope that TheAgentCompany provides a first step, but not the only step, towards these goals, and that we or others may build upon the open source release of TheAgentCompany to further expand in these promising directions” (Xu et al 2025).

Mit Cloudfare unbefugtes Scraping und Verwenden von Originalinhalten stoppen

Image by Werner Moser from Pixabay

In den letzten Jahren haben die bekannten KI-Tech-Unternehmen viel Geld damit verdient, Daten aus dem Internet zu sammeln und als Trainingsdaten für Large Language Models (LLMs) zu nutzen. Dabei sind diese Unternehmen nicht gerade zimperlich mit Datenschutz oder auch mit Urheberrechten umgegangen.

Es war abzusehen, dass es gegen dieses Vorgehen Widerstände geben wird. Neben den verschiedenen Klagen von Content-Erstellern wie Verlagen, Filmindustrie usw. gibt es nun immer mehr technische Möglichkeiten, das unberechtigte Scraping und Verwenden von Originalinhalten zu stoppen. Ein kommerzielles Beispiel dafür ist Cloudfare. In einer Pressemitteilung vom 01.07.2025 heißt es:

San Francisco (Kalifornien), 1. Juli 2025 – Cloudflare, Inc. (NYSE: NET), das führende Unternehmen im Bereich Connectivity Cloud, gibt heute bekannt, dass es nun als erster Anbieter von Internetinfrastruktur standardmäßig KI-Crawler blockiert, die ohne Erlaubnis oder finanziellen Ausgleich auf Inhalte zugreifen. Ab sofort können Eigentümerinnen und Eigentümer von Websites bestimmen, ob KI-Crawler überhaupt auf ihre Inhalte zugreifen können, und wie dieses Material von KI-Unternehmen verwertet werden darf” (Source: Cloudfare).

Siehe dazu auch Cloudflare blockiert KI-Crawler automatisch (golem vom 01.07.2025). Ich kann mir gut vorstellen, dass es in Zukunft viele weitere kommerzielle technische Möglichkeiten geben wird, Content freizugeben, oder auch zu schützen.

Das ist zunächst einmal gut, doch sollte es auch Lösungen für einzelne Personen geben, die sich teure kommerzielle Technologie nicht leisten können oder wollen. Beispielsweise möchten wir auch nicht, dass unsere Blogbeiträge einfach so für Trainingsdaten genutzt werden. Obwohl wir ein Copyright bei jedem Beitrag vermerkt haben, wissen wir nicht, ob diese Daten als Trainingsdaten der LLMs genutzt werden, da die KI-Tech-Konzerne hier keine Transparenz zulassen. Siehe dazu auch Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Dazu gibt es eine weitere interessante Entwicklung, die ich in dem Beitrag Creative Commons: Mit CC Signals Content für Künstliche Intelligenz freigeben – oder auch nicht erläutert habe.

Creative Commons: Mit CC Signals Content für Künstliche Intelligenz freigeben – oder auch nicht

Screenshot: https://creativecommons.org/ai-and-the-commons/cc-signals/

In dem Blogbeitrag Was unterscheidet Künstliche Intelligenz von Suchmaschinen? hatte ich dargestellt, wie sich Suchmaschinen von Künstlicher Intelligenz unterscheiden. Content-Anbieter können dabei nur bedingt auf Datenschutz, Urheberrecht, EU AI Act usw. vertrauen. In der folgenden Veröffentlichung sind die verschiedenen Punkte noch einmal strukturiert zusammengefasst, inkl. einer möglichen Lösung für die skizzierten Probleme:

Creative Commons (2025): From Human Content to Machine Data. Introducing CC Signals | PDF

Creative Commons (CC) kennen dabei viele von uns als eine Möglichkeit, anderen unter bestimmten Bedingungen das Recht zur Nutzung des eigenen Contents einzuräumen. Creative Commons erläutert, dass KI-Modelle die üblichen gesellschaftlichen Vereinbarungen mehr oder weniger ignoriert, und somit den “social contract” aufkündigt. Diesen Hinweis finde ich bemerkenswert, da hier das Vorgehen der KI-Tech-Unternehmen mit den möglichen gesellschaftlichen Auswirkungen verknüpft wird.

Mit CC Signals hat Creative Commons ein erstes Framework veröffentlich, das es ermöglichen soll, Content mit Berechtigungsstufen für KI-Systeme zu versehen.

“CC signals are a proposed framework to help content stewards express how they want their works used in AI training—emphasizing reciprocity, recognition, and sustainability in machine reuse. They aim to preserve open knowledge by encouraging responsible AI behavior without limiting innovation” (ebd.)

Machen Sie bei der Weiterentwicklung dieses Ansatzes mit:

“Head over to the CC signals GitHub repository to provide feedback and respond to our discussion questions: https://github.com/creativecommons/cc-signals.”

Digitale Abhängigkeit in den Verwaltungen von Bund und Ländern: Warum eigentlich?

Image by Robin Higgins from Pixabay

Es ist unstrittig, dass die Verwaltungen in Bund und Ländern modernisiert, und damit auch digitalisiert werden müssen. Dabei haben deutsche Verwaltungen in der Vergangenheit gerne Software amerikanischer Tech-Konzerne genutzt.

“Die deutsche Verwaltung ist in hohem Maße abhängig von proprietären, US amerikanischen IT-Lösungen. 96% der Verwaltungsangestellten arbeiten täglich mit Microsoft-Produkten. 80% der Verwaltungsdaten werden in Datenbanken des US-Anbieters Oracle gespeichert und 75% der Virtualisierungslösungen kommen von VMWare” (ZenDis 02/2025: Digitale Souveränität als Staatsaufgabe).

Die Abhängigkeiten sind für den deutschen Steuerzahlen teuer: “Laufende Rahmenverträge mit großen IT-Firmen wie Microsoft und Oracle belaufen sich auf 13,6 Milliarden Euro” (Netzpolitik.org vom 04.12.2024). Je abhängiger die Verwaltungen hier sind, um so rigoroser können (und werden) Preissteigerungen durchgesetzt – zur Gewinnsteigerung bei den Tech-Konzernen und zum Nachteil der Gesellschaft.

Weiterhin wird deutlich, dass die Trump-Administration einen starken Einfluss auf die amerikanischen Tech-Konzerne hat – ganz im Sinne von “America first”. Was mit den europäischen oder deutschen Befindlichkeiten und Interessen ist, ist nicht wirklich relevant. Das ist aus der Sicht amerikanischer Konzerne und amerikanischer Administrationen verständlich, sollte uns in Europa allerdings nachdenklich stimmen -gerade auch wenn es um den nächsten Schritt geht: Dem Einsatz von Künstlicher Intelligenz.

Da es seit vielen Jahren schon verstärkt Hinweise dazu gibt, dass ohne Open Source keine moderne und souveräne Digitalisierung in Deutschland erreichbar ist, muss man sich als Bürger wundern, dass sich die Politik von den amerikanischen Tech-Konzernen immer weiter abhängig macht. Das ganze Ausmaß dieser Fehlentwicklung wird in dem folgenden Artikel zusammengefasst:

Mischler, G. (2025): Open Source hat im Bund keine Lobby, golem vom 04.07.2025.

Auch Unternehmen, NGOs und Privatpersonen sollten sich die Frage stellen, ob sie nicht die verfügbaren Open-Source-Alternativen für ihre eigene digitale Souveränität nutzen sollten.

Wir haben schon vor mehreren Jahren mit diesen Schritten angefangen. Wir nutzen NEXCLOUD statt Microsoft Cloud, OpenProject statt MS Project, NEXCLOUD TALK statt Teams, Nextcloud Office statt Microsoft Office, etc. Darüber hinaus verwenden wir auch Open Source AI (LocalAI). Damit bleiben alle Daten auf unseren Servern.

Sprechen Sie mich bei Fragen gerne an.

Wolpers, S. (2020): The Remote Agile Guide

Zielgruppe für Wolpers, S. (2020): The Remote Agile Guide sind Scrum Master, Product Owner und Agile Coaches, die mit einem oder mehreren verteilten Team(s) zusammenarbeiten. Dabei wird der Download als “free” bezeichnet, obwohl man sich einschreiben muss – “Subscribe Now”.- und somit mit seinen Daten bezahlt. Ich weiß durchaus, dass diese Vorgehensweise üblich ist, dennoch mag ich es nicht.

Insgesamt bietet der Guide eine gute Basis, sich über die verteilte digitale Zusammenarbeit Gedanken zu machen, und konkrete Möglichkeit für die eigene Vorgehensweise abzuleiten. Der Guide, auf den ich mich beziehe, stammt aus dem Jahr 2020. Dazu möchte ich noch einige Anmerkungen machen:

Zunächst wird mir der technische Aspekt der Zusammenarbeit zu stark betont (MS Teams, Zoom, Trello, Jira, etc.). Die Neurowissenschaften haben dazu beispielsweise bei der Nutzung von Zoom in der Zwischenzeit wichtige Hinweise gegeben: „Zoom scheint im Vergleich zu persönlichen Gesprächen ein dürftiges soziales Kommunikationssystem zu sein.“ Sieh Persönliche Gespräche und Zoom im Vergleich: Das sagt die Neurowissenschaft dazu. Weiterhin erwähnt auch schon das Agile Manifest aus dem Jahr 2001, dass der persönliche Austausch bei komplexen Problemlösungsprozesse wichtig ist, da es dabei um die wichtige implizite Dimension des Wissens geht. Diese ist mit Technologie nur bedingt zu erschließen.

Weiterhin werden in dem Guide zu wenige Open Source Alternativen genannt, die die remote Arbeit in verteilten Teams unterstützen können. Gerade wenn es um die heute wichtige Digitale Souveränität geht, ist das wichtig. Siehe dazu beispielhaft Souveränitätsscore: Zoom und BigBlueButton im Vergleich.

Nicht zuletzt geht es heute auch darum, in verteilten Teams im agilen Prozess der Zusammenarbeit Künstliche Intelligenz zu nutzen. Aus meiner Sicht ist auch hier die Nutzung von Open Source AI zeitgemäß.

Diese Anmerkungen sind als Ergänzungen zu verstehen. Möglicherweise ergibt sich daraus ja noch ein weiterer, aktualisierter Guide.

Digitale Souveränität: Die Initiative AI for Citizens

Website: https://mistral.ai/news/ai-for-citizens

Immer mehr Privatpersonen, Organisationen, Verwaltungen usw. überlegen, wie sie die Möglichkeiten der Künstlichen Intelligenz nutzen können. Dabei gibt es weltweit drei grundsätzlich unterschiedliche Richtungen: Der US-amerikanische Ansatz (Profit für wenige Unternehmen), der chinesische Ansatz (KI für die politische Partei) und den europäischen Ansatz, der auf etwas Regulierung setzt, ohne Innovationen zu verhindern. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich.

Es freut mich daher sehr, dass es in Europa immer mehr Initiativen gibt, die Künstliche Intelligenz zum Wohle von Bürgern und der gesamte Gesellschaft anbieten möchten – alles Open Source. Das in 2023 gegründete Unternehmen Mistral AI hat so einen Ansatz, der jetzt in der Initiative AI for Citizens eine weitere Dynamik bekommt, und einen Gegenentwurf zu den Angeboten der bekannten Tech-Giganten darstellt:

“Empowering countries to use AI to transform public action and catalyze innovation for the benefit of their citizens” (Quelle).

Dabei listet die Website noch einmal ausführlich die Nachteile der “One size fits all AI” auf, die vielen immer noch nicht bewusst sind.

Informieren Sie sich über die vielen Chancen, Künstliche Intelligenz offen und transparent zu nutzen und minimieren Sie die Risiken von KI-Anwendungen, indem Sie offene und transparente Trainingsmodelle (Large Language Models; Small Language Models) und KI-Agenten nutzen. Siehe dazu auch

Das Kontinuum zwischen Closed Source AI und Open Source AI

Open Source AI: Warum sollte Künstliche Intelligenz demokratisiert werden?

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

Was unterscheidet Künstliche Intelligenz von Suchmaschinen?

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Man könnte meinen, dass Künstliche Intelligenz (GenAI) doch nur eine Weiterentwicklung bekannter Suchmaschinen ist, doch dem ist nicht so. In einem Paper wird alles noch ausführlicher beschrieben. Hier nur ein Auszug:

“The intermediation role played by AI systems is altogether new: where the role of search engines has traditionally been to surface the most relevant links to answers of the user’s query, AI systems typically expose directly an answer… For the large number of content producers whose sustainability relies on direct exposure to (or interactions with) the final end user, this lack of reliable exposure makes it unappealing to leave their content crawlable for AI-training purposes.” (Hazaël-Massieux, D. (2024): Managing exposure of Web content to AI systems | PDF.

Für viele Content-Anbieter ist die Vorgehensweise der GenAI-Modelle von großem Nachteil, da diese direkte Ergebnisse liefern, und die Interaktionen mit dem User (wie bei den bisher üblichen Suchmaschinen-Ergebnissen) entfallen können. Die bekannten GenAI-Modelle (Closed Source) nutzen einerseits die vorab antrainierten Daten und andererseits live content (summarize this page), und machen daraus ein Milliarden-Geschäft.

Demgegenüber stehen erste allgemeine Entwicklungen wie EU AI Act, Urheberrecht, Datenschutz usw., die allerdings nicht ausreichend sind, sich als Content-Anbieter (Person, Unternehmen, Organisation, Verwaltung usw.) vor der Vorgehensweise der Tech-Giganten zu schützen.

Es müssen neue, innovative Lösungen gefunden werden.

Dabei wäre es gut, wenn jeder Content-Anbieter mit Hilfe eines einfachen Verfahrens (Framework) entscheiden könnte, ob und wie sein Content für die Allgemeinheit, für Suchmaschinen, für KI-Modelle verwendet werden darf.

… und genau so etwas gibt es in ersten Versionen.

Über diese Entwicklungen schreibe ich in einem der nächsten Blog-Beiträge noch etwas ausführlicher.

Künstliche Intelligenz: 99% der Unternehmensdaten sind (noch) nicht in den Trainingsdaten der LLMs zu finden

Wenn es um allgemein verfügbare Daten aus dem Internet geht, können die bekannten Closed Source KI-Modelle erstaunliche Ergebnisse liefern. Dabei bestehen die genutzten Trainingsdaten der LLMs (Large Language Models) oft aus den im Internet verfügbaren Daten – immer öfter allerdings auch aus Daten, die eigentlich dem Urheberrecht unterliegen, und somit nicht genutzt werden dürften.

Wenn es um die speziellen Daten einer Branche oder eines Unternehmens geht, sind deren Daten nicht in diesen Trainingsdaten enthalten und können somit bei den Ergebnissen auch nicht berücksichtigt werden. Nun könnte man meinen, dass das kein Problem darstellen sollte, immerhin ist es ja möglich ist, die eigenen Daten für die KI-Nutzung zur Verfügung zu stellen – einfach hochladen. Doch was passiert dann mit diesen Daten?

Immer mehr Unternehmen, Organisationen und Verwaltungen sind bei diesem Punkt vorsichtig, da sie nicht wissen, was mit ihren Daten bei der KI-Nutzung durch Closed Source oder auch Closed Weighted Modellen passiert. Diese Modelle sind immer noch intransparent und daher wie eine Black Box zu bewerten. Siehe dazu Das Kontinuum zwischen Closed Source AI und Open Source AI oder Künstliche Intelligenz: Würden Sie aus diesem Glas trinken?

Wollen Sie wirklich IHRE Daten solchen Modellen zur Verfügung stellen, um DEREN Wettbewerbsfähigkeit zu verbessern?

“So here’s the deal: you’ve got data. That data you have access to isn’t part of these LLMs at all. Why? Because it’s your corporate data. We can assure you that many LLM providers want it. In fact, the reason 99% of corporate data isn’t scraped and sucked into an LLM is because you didn’t post it on the internet. (…) Are you planning to give it away and let others create disproportionate amounts of value from your data, essentially making your data THEIR competitive advantage OR are you going to make your data YOUR competitive advantage?” (Thomas et al. 2025).

Doch was ist die Alternative? Nutzen Sie IHRE Daten zusammen mit Open Source AI auf ihren eigenen Servern. Der Vorteil liegt klar auf der Hand: Alle Daten bleiben bei Ihnen.

Siehe dazu auch

LocalAI: KI-Modelle und eigene Daten kombinieren

LocalAI: Aktuell können wir aus 713 Modellen auswählen

Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Digitale Souveränität: Wo befinden sich deine Daten?